Publications:

  1. E. Davoli – I. Fonseca,
    Relaxation of p-growth integral functionals under space-dependent differential constraints,
    Springer INDAM Series, (2017), to appear.
  2. E. Davoli – P. Piovano – U. Stefanelli,
    Sharp N^3/4 law for the minimizers of the Edge-Isoperimetric Problem on the triangular lattice
    Journal of Nonlinear Science27(2) (2017) 627 – 660
  3. E. Davoli – P. Piovano – U. Stefanelli,
    Wulff shape emergence in graphene,
    Math. Models Methods Appl. Sci. 26 (12) (2016) 2277 – 2310.
  4. E. Davoli – I. Fonseca,
    Periodic homogenization of integral energies under space-dependent differential constraints,
    Portugaliae Math. 73 (2016) 279 – 317.
  5. E. Davoli – I. Fonseca,
    Homogenization of integral energies under periodically oscillating differential constraints,
    Calc. Var. Partial Differential Equations 55 (2016) 1 – 60.
  6. L. Bufford – E. Davoli – I. Fonseca,
    Multiscale homogenization in Kirchhoff’s nonlinear plate theory,
    Math. Models Methods Appl. Sci. 25 (2015) 1765 – 1812;
  7. E. Davoli – M. G. Mora,
    Stress Regularity for a New Quasistatic Evolution Model of Perfectly Plastic Plates,
    Calc. Var. Partial Differential Equations 54 (2015) 2581 – 2614;
  8. E. Davoli – G. A. Francfort,
    A Critical Revisiting of Finite Elasto-Plasticity,
    SIAM Journal of Mathematical Analysis 47 (2015) 526 – 565;
  9. E. Davoli,
    Linearized plastic plate models as Γ-limits of 3D finite elastoplasticity,
    ESAIM:Control, Optimisation and calculus of variations 20 (2014) 725 – 747;
  10. E. Davoli,
    Quasistatic evolution models for thin plates arising as low energy Γ-limits of finite plasticity,
    Math. Models Methods Appl. Sci. 24 (2014), 2085 – 2153;
  11. E. Davoli – M. G. Mora,
    A quasistatic evolution model for perfectly plastic plates derived by Gamma-convergence,
    Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 615 – 660;
  12. E. Davoli,
    Thin-walled beams with a cross-section of arbitrary geometry: derivation of linear theories starting from 3D nonlinear elasticity,
    Adv. Calc. Var. 6 (2013), 33 – 91;
  13. E. Davoli – M. G. Mora,
    Convergence of equilibria of thin elastic rods under physical growth conditions for the energy density,
    Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), 501 – 524;

Preprints:

Theses:

Advertisements